Potential Sources of Atmospheric Organic Carbon

- Direct anthropogenic emissions
 - Combustion
 - Road dusts
- Biogenic emissions
 - Plant waxes
 - Pollens, bacteria, viruses
- Secondary organic aerosols
 - Oxidation followed by condensation
 - Heterogeneous oxidation of adsorbed organics

Determining Sources of Atmospheric Organic Carbon
Determining Sources of Atmospheric Organic Carbon

• Emission Inventories
 – Biogenics?
 – Secondary organic aerosols?

Questions

• Can organic chemicals such as combustion products be useful tracers of carbonaceous aerosol sources?
• Can specific organic chemicals serve as tracers of secondary organic aerosol production?
• Hint: consider atmospheric residence times relative to transport distances from sources.
Outline

• Application of source apportionment techniques to anthropogenic organic chemicals in the atmosphere
 – PAH sources in Baltimore
 – Aerosol sources over the Indian Ocean

• Recent analytical advances
 – Improved sensitivity → better temporal resolution

Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods

McDonald & Lassey, III and Joel E. Baker

Statistical Methods for Source Apportionment

Multivariate Techniques
- Principal Component Analysis with Multiple Linear Regression (PCA MLR)
- UNMIX
- Positive Matrix Factorization (PMF)

Ratios
- phenanthrene/anthracene
- indeno[1,2,3-cd]pyrene/elemental carbon

Positive Matrix Factorization

\[X = Y + E \]
where \(X \) = initial data matrix
\(Y \) = calculated matrix
\(E \) = residuals

\[Y = GF \]
where \(G \) = source contribution matrix
\(F \) = source profile

PMF Algorithm

Minimize \("Q" \)

\[\sum \frac{(E_{ij}/\sigma_{ij})^2}{m \times n} \]

Sample Matrix
\(m \times n \)

Error Matrix
\(m \times n \)

Minimize "Q"

\[\sum (E_{ij}/\sigma_{ij}) \]

Source Contribution
\(m \times p \)

Source Profile
\(p \times n \)

Daily Source Contribution Derived from PMF

- Oil
- Coal

Daily Source Contribution Derived from PMF

- Diesel
- Gasoline
PAH Source Apportionment Conclusions

- Successfully determined the sources of PAHs using 3 methods
- Major Sources of PAHs in Baltimore Are Identified
 - 26% - 34% Coal
 - 18% - 26% Oil
 - 17% - 22% Mobile Sources
 - Diesel ~ Gas
 - 17% - 40% Unknown/Wood
- Source Contributions Change Seasonally
 - Coal Dominant in Summer
 - Oil Dominant in Winter
 - No Seasonal Trends in Mobile Source

Figure 3. Plots of NHcT Bengal 2 and 3 meteorological regime indeno[1,2,3-cd]pyrene (●), benzo[ghi]perylene (○) and coronene (▲) vs (a) EC, (b) OC, (c) SO4-2 and (d) K+. All PAHs were highly correlated with EC, slightly less for K+ and insignificantly for SO4-2 and OC.
PAH concentrations increase dramatically over the northern Indian Ocean, consistent with enhanced anthropogenic emissions from the Indian sub-continent.

Indeno[1,2,3-cd]pyrene/EC ratios suggest that fossil fuel combustion is the dominant source of the particulate phase PAHs to the Northern Indian Ocean atmosphere.

The PAH/EC ratios suggest that biomass/biofuel combustion is not the dominant source elemental carbon-associated PAHs.

Next Steps: Improving Temporal Resolution

Greater Temporal Resolution = Less Analyte

1. Greater Sampling Flow Rate
 a. Increased pressure drops (volatilization)
 b. Similar exposure to oxidants (*in situ* degradation)

2. Increase collection surface area
 Greater collection substrate surface area = greater potential for contaminant interference (high blanks)

3. Increase analytical sensitivity
 Greater potential for blank interferences

Clean sampling/large-volume GC injection/optimized mass spectrometer

TSP 20 ug/m³
1 m³ diesel exhaust

Off-road 1994 diesel

Berner Impactor
12 hours, 60 m³

Hi-Vol Filter
24 hours 720 m³
Final Thoughts

• Secondary organic aerosols are the toughest nut to crack

• Discrete measurements provide ground truthing for remote measurements, but will always be at a coarser temporal and spatial scale

• Orders of magnitude improvements in aerosol analytical techniques provide a significant opportunity

• How do we collaborate?

www.cbl.umces.edu/~baker