AVHRR Observations of the Aerosol Indirect Effect

for Summertime Stratiform Clouds in the Northeastern Atlantic

Mark Matheson, James A. Coakley, Jr., Bill Tahnk
Oregon State University
College of Oceanic and Atmospheric Sciences

Aerosol Direct Effect

Aerosols interact directly with solar radiation.
Views of Denver with and without aerosols. (March 20 and 22, 2004)

Aerosol Indirect effect

Fewer CCN = Less reflective
More CCN = More reflective

Usually assume constant liquid water

Images courtesy of NASA

Cloud Lifetime Effect (AIE – 2)

Smaller droplets lead to suppressed drizzle.
Clouds persist longer and may have greater horizontal extent.
Does liquid water remain constant?

Photo: Maryellen Kinhan
Implications for Climate Change

The global mean relative forcing of the climate system for the year 2000, relative to 1750

Source: IPCC 2001

New look at the IPCC Chart

Treat the estimates on the IPCC chart as means and standard deviations

- Reported errors treated as 1.0, 1.5, or 2.0 standard deviations
- Various assumptions of Gaussian, log-normal, or box errors

New look at the IPCC Chart

Divide into aerosol and non-aerosol components

Boucher and Haywood, 2001

Example of Satellite Data

Visible Image

NOAA / AVHRR
Summary of Retrieval Method

Satellite Observations

- Clear
- Cloudy

Radiative Transfer Model (Aerosols)

Look-up Table

Radiative Transfer Model (Clouds)

Look-up Table

Aerosol or Cloud Properties of Pixel

Example of Retrieved Properties

Four Months of Data

- More aerosol to the east (and north)
- Droplets smaller to the east

Correlation between τ_a and R_e

Polluted clouds have Smaller droplets
Correlation between τ_a and τ_{cloud}

- Thicker clouds to the east
- Polluted clouds are optically thicker ($\tau = n\sigma z$)

Correlation between τ_a and LWP

- LWP = $2/3 \, R_e \, \tau_{\text{cloud}}$
- Polluted clouds lose liquid water

A look at smaller regions

- Partially alleviate issue of large-scale gradient
- Focus on effect of available water

Comparison of Smaller Regions

- Small Aerosol Burden – 47.5N, 17.5W
- Wet

- Large Aerosol Burden – 42.5N, 12.5W
- Dry
Take-home message

- Measuring the Aerosol Indirect Effect is crucial for predicting climate change
- But we need to understand Cloud Liquid Water, which does not remain constant
- Available moisture may govern magnitude of Aerosol Indirect Effect