Optical Depth Comparison of an Elastic Lidar and MODIS

R. Rogers, K. McCann, R. Hoff, P. Menzel, S. Ackerman
UMBC/CREST, NESDIS/ORA, CIMSS

Outline

• Project Goals
• Elastic Lidar Facility (ELF)
• Comparing MODIS and ELF Optical Depths
 – Bad Agreement
 – Good Agreement
• Conclusions/Future Work

Motivation/Goals

• Paul Menzel and Steve Ackerman interested in comparison of MODIS and lidar optical depth products
 – Determine the minimum optical depth that MODIS is capable of resolving
 – Resolve any large discrepancies in the optical depth comparison

Elastic Lidar Facility (ELF)
ABOVE 2003 Experiment

- Chesapeake Lighthouse
 - 14 miles off the VA shore
 - More than 70 overpasses
 - Uniform ocean surface
- Cloud detection for AIRS overpasses on the Aqua satellite

*http://physics.umbc.edu/~mcmillan/ABOVE/

Comparing the Data

- Convert ELF temporal data to MODIS spatial data
- Integration over the columns

Optical Depth Comparison

June 6, 2003

Poor Agreement: June 6, 2003
Cirrus Clouds

*http://eosdb.ssec.wisc.edu/modisdirect

Integrating Below the Cirrus

Conclusions/Future Work

- Comparison showed generally good agreement
 - More data is needed for minimum optical depth validation
- Test ELF algorithm against Klett method
\[\beta^{+1}_A = \beta^{-1}_A \left(\frac{\frac{2}{\beta} \sigma_0(z)}{K \beta^{+1}_A} \right) \]

\[\alpha_s = S_A \beta_s \]

\[\tau_A = \int_0^z \alpha_s dz \]

Equation 1

P\(_0\)\(_i\): Power

\(K\): system constant

\(\beta_s\): Aerosol backscatter coefficient

\(\alpha_s\): Rayleigh backscatter coefficient

\(\nu_s\): Aerosol extinction coefficient

\(\nu_r\): Rayleigh extinction coefficient

Equation 2

\(S_A\) is a constant value that depends on the properties of the aerosols that are measured.

Equation 3

We assume most of the contribution to optical depth lies in the 0.05 to 15.33 km range, which is the limits of ELF’s ability to detect.